
RSE Curriculum

Gesellschaft für Informatik deRSE Julian Dehne
Florian Goth Jan Phillip Thiele Anna-Lena Lambrecht



1 WORK IN PROGRESS THIS IS NOT THE
OFFICIAL STATEMENT OF THE
COMMUNTIY BUT THE CURRENT
VERSION

2



2 Why a RSE Curriculum?

The term Research Software Engineer, or RSE, emerged a little over 10 years ago as a way to
represent individuals working in the research community but focusing on software development.
The term has been widely adopted and there are a number of high-level definitions of what an
RSE is. However, the roles of RSEs vary depending on the institutional context they work in.
At one end of the spectrum, RSE roles may look similar to a traditional research role. At the
other extreme, they resemble that of a software engineer in industry. Most RSE roles inhabit
the space between these two extremes.

For the purpose of creating an RSE-Master Programm we identify the RSE as a person who
creates or improves research software and/or the structures that the software interacts with
in the computational environment of a research domain. In this spectrum we see skilled team
member who may also choose to conduct own research as part of their role. But on the other
end we also see paths for an RSE to specifically focus on a technical role as an alternative to a
traditional research role because they enjoy and wish to focus on the development of research
software.

For this task, to support research with/in the creation of digital tools, we structure this sample
curriculum along three pillars (Goth et al. 2024):

• research skills: these are competencies that enable an RSE to effectively participate in
the research domain.

• technical skills: these are competencies, that enable an RSE to create effective tools for
research

• communication skills: these are skills that enable an RSE to effectively work and com-
municate with its peers and stakeholders across multiple domains.

2.1 Research skills

TODO add text here

Research skills are implemented in the following components:

• mnt_project (TODO work/elaborate on naming, add cross-reference)
• mnt_wildcard
• rse_thesis

3



Technical skills are implemented in:

• gen_datascience
• gen_programming
• gen_softwareengineering
• rse_softwareengineering
• rse_programming

(TODO check if technical training assumes too big a role)

communication skills are implemented in:

• rse_management
• mnt_project
• rse_theory

4



3 Ideas

Electronic Lab course. Heard of this in Erlangen for physics. Talks about ELN among other
things.

3.1 Original Motivation

The target audience for such a master’s programme would be students holding a bachelor’s
degree from a domain science, which we will call home domain in the following.

There is explicitly no restriction on the candidates’ home domain: it may be from the STEM
disciplines, life sciences, humanities or social sciences. Candidates with a bachelor’s degree
in computer science are also explicitly included, although we acknowledge that their master’s
programme should include adaptations to make their interaction effective with other domain
scientists.

In order to give the future RSE the necessary breadth, we expect this to be a four semester
curriculum.

The curriculum is formed from a combination of modules, some of which are core modules
teaching essential skills that must be completed by all students. Other modules introduce
more specialised concepts and skills.

During the master’s programme, students should pick an RSE specialisation from the list in
this paper and attend these additional modules to deepen their knowledge in the field.

Core modules are of course drawn from the three pillars of the RSE and can be categorised
accordingly.

3.1.1 Software / Technical Skills

• Foundational module
Introduction to programming: Emphasising use cases over programming paradigms, stu-
dents learn at least two languages:

– A language that facilitates prototyping and data processing e.g., Python or R

5



– A language for designing complex, performance-critical systems e.g., C/Cpp
This exposes them to computers in a hands-on fashion and is the foundation for
DOCBB, DIST.

• Computing environment module
Programming languages are not enough to work in a landscape of many interconnected
software components. Hence, we require something like software craftsmanship:

– Tools: Unix shell, version control systems, build systems, documentation generators,
package distribution platforms, and software discovery systems
This strengthens skills in DIST, DOCBB, SWREPOS, SRU.

• Software engineering module
Develop foundational software engineering competencies:

– Requirements engineering
– Software architecture and design
– Implementation, quality assurance, and software evolution

Emphasising and strengthening DOCBB, DIST on a more abstract level.

3.1.2 Research Skills

• Optional domain mastery module
Additional minor research courses; students with a home-domain already have the re-
search part well-covered.

• Research tools module
Teach tools used to distribute and publish software, and introduce domain-specific data
repositories, gaining foundational knowledge in SRU, SP, DOMREP.

• Meta-research module
Teach how research works: Introduce the research life cycle, the data life cycle, and the
software life cycle abstractly.

3.1.3 Communication Skills

• Project management methods
Teach project management methods that are useful in science, such as agile ones PM.

• Communication skills module
Courses focusing on:

– Interdisciplinary communication
– Interacting across cultures
– Communication in hierarchies

6



– Supporting end users effectively
All facets of the USERS skill.

• Teaching module
Covers topics to effectively design courses and teaching material for various digital tools,
strengthening the TEACH skill.

3.2 Hands-On Practice

RSE work also involves craftsmanship skills. Hands-on practice is integral.

• At least two lab projects are required within the mandatory curriculum.
• These should be team-based and involve a question from a domain science.
• Ideally, projects cover both the candidate’s home domain and another domain.
• Projects should stem from collaborations with scientists within the institution, with RSE

students taking on a consultant role.

This setup strengthens TEAM, TEACH, USERS and likely also MOD through interaction.

To emphasise exposure beyond their bachelor’s domain, RSEs should support their non-home-
domain project with introductory courses from that discipline. This encourages adapting
vocabulary and thinking—an aspect of MOD.

3.3 Optional Modules and Specialisations

To align with the specialisations listed in this paper, example optional modules include:

• HPC engineering / parallel programming
• Numerical mathematics / scientific computing
• Web technologies
• Data stewardship
• AI models / statistics
• Community management / training

3.4 Master’s Thesis

The programme concludes with a master’s thesis that should:

• Be dual-supervised by an RSE project supervisor and a domain supervisor
• Answer a relevant research question strengthening NEW using computational methods

7



• Include software development as a required, gradable deliverable

The RSE supervisor ensures and grades the software craftsmanship. This ensures the effective
application of RSE skills in an actual research environment.

8



4 Possible Job Roles for an RSE

4.1 Open Science RSE

Open science and FAIRness of data and software are increasingly important topics in research,
as exemplified by the demand of an increasing amount of research funding agencies requiring
openness. Hence, an Open Science RSE is required to have a deeper knowledge in Research
Culture (RC) and how to distribute software publicly (Software Reusability (SRU),
Software Publication (SP)). Open Science RSEs can help researchers navigate the technical
questions that come up when practising Open Science, such as:

• “How do I make my code presentable?”
• “How do I make my code citable?”
• “What do I need to do to make my software FAIR?”
• “How do I sustainably work with an (international) team on a large code base?”

Like the Data-focused RSE, they have a deep understanding of Research Data Manage-
ment (RDM) topics.

4.2 Project/Community Manager RSEs

When research software projects become larger, they need someone who manages processes
and people. In practice, this concerns change management for code and documentation, and
community work to safeguard usability and adaptability, but also handling project gover-
nance and scalable decision-making processes. This gap can be filled by people who invest in
the Project Management (PM), User Support (USERS), and Team Management
(TEAM) skills.

Building a community around a research project is an important building block in building
sustainable software (Segal 2009), so these RSEs play an important role, even if they do not
necessarily touch much of the code themselves.

9



4.3 Teaching RSEs

RSEs interested in developing their Teaching (TEACH) skill can focus on teaching the next
generation of researchers and/or RSEs and will play a vital role in improving the quality of
research software. They need to have a good understanding of all RSE competencies relevant
to their domain and additionally should have experience or training in the educational field.

4.4 User Interface/User Experience Designers for Research
Software

Scientific software is a complex product that often needs to be refined in order to be usable
even by other scientists. To facilitate this, there are people required that specialise in the
Documentation & Best Practices (DOCBB) and probably the Distribution (DIST)
competency with a focus on making end-user-facing software really reusable and hence FAIR.
This task is supported by strong Modelling (MOD) skills to reason about the behaviour of
potential users of the software.

10



5 General Study Process

5.1 Semester 1

Type Description SWS ECTS
Seminar RSE Nuts and Bolts I 2 3
Lecture Wildcard Science I 2 3
Lecture Basic Programming 2 1
Exercise Basic Programming Exercise 4 4
Lecture Mathematical Foundations of Data Science 4 6

Total ECTS: 17

5.2 Semester 2

Type Description SWS ECTS
Lecture Applied Programming 2 1
Exercise Applied Programming Exercise 4 4
Lecture Wildcard Science II 2 3
Lab Wildcard Science Lab I 4 6
Lecture Statistical Data Analysis 4 4
Lecture Scientific Computing Basics 2 3
Exercise Scientific Computing Basics Exercise 2 3

Total ECTS: 24

5.3 Semester 3

11



Type Description SWS ECTS
Seminar RSE Nuts and Bolts II 2 3
Lab Wildcard Science Lab II 2 2
Exercise Text2Data 4 4
Lecture Computational Wildcard Science 2 3
Lecture Software Engineering I 2 4
Exercise Software Engineering I Exercise 2 2
Lecture High Performance Computing 2 3
Exercise High Performance Computing Exercise 2 3

Total ECTS: 24

5.4 Semester 4

Type Description SWS ECTS
Thesis RSE Master Thesis 10 30

Total ECTS: 30

Total Curriculum ECTS: 95

12



6 Complete Competences Table

TODO: replace this with Excel download in html and possibly remove for pdf

ID Description Disciplines Prerequisites Evidence Author Source
C01 Use a version

control
system to
track software
changes

CS, Bioinfor-
matics

Push a
merge
request
with docu-
mented
code

Florian
Goth

https://
github.
com/
the-
teachingRSE-
project/
RSE-
Masters

C02 Conduct a
ReproHack
on domain-
specific data

Physics, CS C01 Submit a
Repro-
Hack
report

Florian
Goth

https://
github.
com/
the-
teachingRSE-
project/
RSE-
Masters

13

https://github.com/the-teachingRSE-project/RSE-Masters
https://github.com/the-teachingRSE-project/RSE-Masters
https://github.com/the-teachingRSE-project/RSE-Masters
https://github.com/the-teachingRSE-project/RSE-Masters
https://github.com/the-teachingRSE-project/RSE-Masters
https://github.com/the-teachingRSE-project/RSE-Masters
https://github.com/the-teachingRSE-project/RSE-Masters
https://github.com/the-teachingRSE-project/RSE-Masters
https://github.com/the-teachingRSE-project/RSE-Masters
https://github.com/the-teachingRSE-project/RSE-Masters
https://github.com/the-teachingRSE-project/RSE-Masters
https://github.com/the-teachingRSE-project/RSE-Masters
https://github.com/the-teachingRSE-project/RSE-Masters
https://github.com/the-teachingRSE-project/RSE-Masters
https://github.com/the-teachingRSE-project/RSE-Masters
https://github.com/the-teachingRSE-project/RSE-Masters


7 Module Descriptions (Inline)

7.1 Wildcard Science Module

This module offers RSE students the opportunity to deepen their understanding of a scientific
discipline outside of their home domain. Students choose a science module — such as physics,
chemistry, biology, or earth sciences — and engage with its research practices, core questions,
and data/software challenges.

The goal is to help students become better collaborators by gaining first-hand exposure to the
terminology, logic, and needs of another scientific domain. This broadens the student’s ability
to apply RSE skills in interdisciplinary teams and unfamiliar environments.

The module may consist of lectures, lab sessions, and domain-specific mini-projects. RSEs are
encouraged to reflect on how software engineering, data handling, reproducibility, and tooling
intersect with the chosen discipline.

This module is deliberately flexible to accommodate institutional offerings and student interests
as well as providing the option to stay attached to the identity of the chosen discipline.

Lecture: Wildcard Science I

SWS: 2 ECTS: 3

Lecture: Wildcard Science II

SWS: 2 ECTS: 3

Lab: Wildcard Science Lab I

SWS: 4 ECTS: 6

Lab: Wildcard Science Lab II

SWS: 2 ECTS: 2

14



7.2 Science Lab Module

Applied Research Software Engineering in MINT Sciences

This lab module provides students with a hands-on opportunity to apply research software
engineering principles to real-world scientific problems from the MINT disciplines (Mathemat-
ics, Informatics, Natural Sciences, and Technology). Students work on projects originating
from active research contexts — such as simulations in physics, data analysis in chemistry,
modeling in biology, or

Lab: Science Lab

SWS: 4 ECTS: 6

7.3 Example Module: Fundamentals of Computer Science

This is an example module to showcase the integration pipeline

7.3.1 Basics of Computer Science

7.3.1.1 Basic Concepts

• Introduction to computer science, basic concepts of operating systems using UNIX/Linux
as an example

• From problem to algorithm: concept of an algorithm, design of algorithms, pseudocode,
refinement, brute-force algorithms, models and modeling, graphs and their represen-
tation, simple algorithms on graphs, analysis of algorithms (correctness, termination,
runtime)

• Implementation of algorithms (e.g., using Python)
• Programming paradigms: procedural, object-oriented, and functional programming; re-

cursion versus iteration
• From program to process: assembly languages, assembler, compiler, interpreter, syntax

and semantics of programming languages
• Limits of algorithms: computability, decidability, undecidability

Lecture: Basic Programming

SWS: 2 ECTS: 1

Exercise: Basic Programming Exercise

SWS: 4 ECTS: 4

15



7.3.2 Applied Programming

7.3.2.1 Procedural Programming Concepts

Programming with an imperative-procedural language (such as C):

• Data types, type casting, control structures, functions and procedures, parameter passing
paradigms, call stack

• Pointers, arrays, strings, structured types
• Errors and their handling
• Dynamic memory management
• Program libraries

7.3.2.2 Programming in an Object-Oriented Language (e.g., Java)

• Classes, objects, constructors
• Inheritance, polymorphism, abstract classes/interfaces
• Exceptions and exception handling
• Namespaces (packages)
• Generic classes and types
• Program libraries

Lecture: Applied Programming

SWS: 2 ECTS: 1

Exercise: Applied Programming Exercise

SWS: 4 ECTS: 4

7.4 Module Competences

16



ID Description Disciplines Prerequisites Evidence Author Source
ex_programming_mod1_1Use an

imperative-
procedural
programming
language (e.g.,
C) and an
object-
oriented
language (e.g.,
Java) with
confidence

Computer
Science

Submit
working
programs
in both
languages
demon-
strating
syntax
and
language-
specific
features

University
of Pots-
dam

Link

ex_programming_mod1_2Implement
basic data
structures
and
algorithms

Computer
Science

ex_programming_mod1_1Submit a
project
with im-
plemented
algorithms
and data
structures
(e.g., lists,
trees,
sorting)

University
of Pots-
dam

Link

ex_programming_mod1_3Distinguish
between error
types and
handle them
appropriately
in code

Computer
Science

ex_programming_mod1_1Demonstrate
error
handling
techniques
in
submitted
code (e.g.,
input
validation,
error
codes, ex-
ceptions)

University
of Pots-
dam

Link

ex_programming_mod1_4Identify and
use
appropriate
library
functions in
programming
tasks

Computer
Science

ex_programming_mod1_1Integrate
external
libraries in
coding
tasks and
document
their usage

University
of Pots-
dam

Link

17

https://puls.uni-potsdam.de/qisserver/pages/cs/sys/portal/hisinoneIframePage.faces?id=qis_MKSuchen_0&navigationPosition=up_modulbeschreibung%2Cqis_MKSuchen&recordRequest=true
https://puls.uni-potsdam.de/qisserver/pages/cs/sys/portal/hisinoneIframePage.faces?id=qis_MKSuchen_0&navigationPosition=up_modulbeschreibung%2Cqis_MKSuchen&recordRequest=true
https://puls.uni-potsdam.de/qisserver/pages/cs/sys/portal/hisinoneIframePage.faces?id=qis_MKSuchen_0&navigationPosition=up_modulbeschreibung%2Cqis_MKSuchen&recordRequest=true
https://puls.uni-potsdam.de/qisserver/pages/cs/sys/portal/hisinoneIframePage.faces?id=qis_MKSuchen_0&navigationPosition=up_modulbeschreibung%2Cqis_MKSuchen&recordRequest=true


ID Description Disciplines Prerequisites Evidence Author Source
ex_programming_mod1_5Use basic

functions and
mechanisms
of operating
systems using
UNIX/Linux
as an example

Computer
Science

Demonstrate
file
handling,
permis-
sions, and
process
control
using
UNIX/Linux
commands

University
of Pots-
dam

Link

ex_programming_mod1_6Create and
refine simple
algorithms
using
semi-formal
notation

Computer
Science

Submit
pseu-
docode or
flowcharts
for given
algorith-
mic
problems

University
of Pots-
dam

Link

ex_programming_mod1_7Evaluate and
compare
algorithms
using runtime
analysis

Computer
Science

ex_programming_mod1_6Provide
time
complexity
compar-
isons for
multiple
algorith-
mic
solutions

University
of Pots-
dam

Link

ex_programming_mod1_8Implement
simple
algorithms
using
imperative
and
functional
programming
styles (e.g., in
Python)

Computer
Science

ex_programming_mod1_6Submit
code
demon-
strating
both
imperative
and
functional
styles for
the same
problem

University
of Pots-
dam

Link

18

https://puls.uni-potsdam.de/qisserver/pages/cs/sys/portal/hisinoneIframePage.faces?id=qis_MKSuchen_0&navigationPosition=up_modulbeschreibung%2Cqis_MKSuchen&recordRequest=true
https://puls.uni-potsdam.de/qisserver/pages/cs/sys/portal/hisinoneIframePage.faces?id=qis_MKSuchen_0&navigationPosition=up_modulbeschreibung%2Cqis_MKSuchen&recordRequest=true
https://puls.uni-potsdam.de/qisserver/pages/cs/sys/portal/hisinoneIframePage.faces?id=qis_MKSuchen_0&navigationPosition=up_modulbeschreibung%2Cqis_MKSuchen&recordRequest=true
https://puls.uni-potsdam.de/qisserver/pages/cs/sys/portal/hisinoneIframePage.faces?id=qis_MKSuchen_0&navigationPosition=up_modulbeschreibung%2Cqis_MKSuchen&recordRequest=true


ID Description Disciplines Prerequisites Evidence Author Source
ex_programming_mod1_9Distinguish

between
programming
paradigms
and identify
their charac-
teristics

Computer
Science

ex_programming_mod1_1Classify
given code
snippets
by
paradigm
and justify
the classifi-
cation

University
of Pots-
dam

Link

C10 Express
simple
programs in
an assembly
language

Computer
Science

Translate
simple
high-level
logic into
assembler
code

University
of Pots-
dam

Link

C11 Discuss the
limits of
algorithms,
including
computability
and
decidability

Computer
Science

Write a
short essay
or present
on
concepts
such as
the
Halting
Problem
or unde-
cidability

University
of Pots-
dam

Link

7.5 Sources & Implementations:

7.5.1 Curricula

• Computing Curricula 2020

7.5.2 Courses

• UP Grundlagen der Programmierung

• UP Praxis der Programmierung

• Python for Psychologists

19

https://puls.uni-potsdam.de/qisserver/pages/cs/sys/portal/hisinoneIframePage.faces?id=qis_MKSuchen_0&navigationPosition=up_modulbeschreibung%2Cqis_MKSuchen&recordRequest=true
https://puls.uni-potsdam.de/qisserver/pages/cs/sys/portal/hisinoneIframePage.faces?id=qis_MKSuchen_0&navigationPosition=up_modulbeschreibung%2Cqis_MKSuchen&recordRequest=true
https://puls.uni-potsdam.de/qisserver/pages/cs/sys/portal/hisinoneIframePage.faces?id=qis_MKSuchen_0&navigationPosition=up_modulbeschreibung%2Cqis_MKSuchen&recordRequest=true
https://dl.acm.org/doi/book/10.1145/3467967
https://puls.uni-potsdam.de/qisserver/pages/cs/sys/portal/hisinoneIframePage.faces?id=qis_MKSuchen_0&navigationPosition=up_modulbeschreibung%2Cqis_MKSuchen&recordRequest=true
https://puls.uni-potsdam.de/qisserver/pages/cs/sys/portal/hisinoneIframePage.faces?id=qis_MKSuchen_0&navigationPosition=up_modulbeschreibung%2Cqis_MKSuchen&recordRequest=true
https://peerherholz.github.io/Python_for_Psychologists_Winter2021/index.html


• Grundlagen der Informatik

7.5.3 Programs

• UP Computational Science Master

20

https://ekvv.uni-bielefeld.de/sinfo/publ/modul/50702407
https://www.uni-potsdam.de/de/studium/konkret/rechtsgrundlagen/studienordnungen/informatik


8 Wildcard Computational Science

This module offers RSE students the opportunity to deepen their understanding of computa-
tional methods specific to a science discipline. Students choose a science module — such as
physics, chemistry, biology, or earth sciences — and engage with its computational practices,
core questions, and data/software challenges.

The goal is to apply the general competences acquired in the general programming and software
engineering courses to the practices and special needs of the chosen discipline. Computational
Physics might face different algorithmic or conceptual challenges than computational chemistry.
This module is intended for the case that the institution offers such a specialized computational
course.

Lecture: Computational Wildcard Science

SWS: 2 ECTS: 3

Lab: Wildcard Science Lab

SWS: 4 ECTS: 6

8.1 Introduction

This module, inspired by the MIT Missing Semester, addresses the “nuts and bolts” often
missing from traditional academic training in computing. It aims to provide students with
practical skills and conceptual understanding for building robust, maintainable, and repro-
ducible research software—key competencies in Research Software Engineering (RSE).

8.2 General Competencies

The module begins with general-purpose computing tools and techniques that are foundational
for any research software engineer:

• Shell tools and scripting
• Command-line environments
• Editors and IDEs (e.g., Vim)
• Version control (Git)

21

https://missing.csail.mit.edu/


• Data wrangling
• Debugging and profiling
• Metaprogramming
• Security and cryptography

8.3 RSE-Specific Topics

Building on these foundations, the module introduces RSE-specific concepts and good prac-
tices:

• Version control and collaboration

– Git for code history, collaboration, and issue tracking

• Virtualization concepts

– Containerization and environment management

• The Data Life Cycle

– Managing research data and understanding data provenance

• Good coding practices

– Reproducible and testable code
– Meaningful documentation and error messages
– Modular software design
– Performance-conscious coding
– Easily installable and distributable software
– Coding standards, formatting, and linting

• Software management planning

– Writing Data and Software Management Plans
– Sustainable development and community involvement

• Low-level programming

– Introduction to a compiled language (e.g., C) to expose hardware-level concerns
and efficient memory management

• Long-term software maintenance

– Version tracking, bug management, and sustainability strategies
– Building and maintaining research software communities

22



8.4 Beyond the Basics

Finally, the module touches on practices that support the scholarly nature of research soft-
ware:

• Software publication and citation (see SP in (Goth et al. 2024))
• Use of domain-specific repositories and registries (see DOMREP in (Goth et al. 2024))

By the end of this module, students will be well-equipped to design, develop, document, and
maintain research software that meets high standards of quality, sustainability, and repro-
ducibility.

Seminar: RSE Nuts and Bolts I This is an introductory class to essential techniques an RSE
needs in everyday life. SWS: 2 ECTS: 3

Seminar: RSE Nuts and Bolts II This is an advanced class of RSE techniques that includes
a teaching component as part of the preparation for working as an RSE in interdisciplinary
teams. SWS: 2 ECTS: 3

8.5 Module Competences

ID Description Disciplines Prerequisites Evidence Author Source
rse_tooling_1Use literate

programming
tools (e.g.,
Quarto,
Marimo,
Pluto.jl,
Jupyter) to
combine code,
results, and
narrative

Research
Software
Engineering

Submit a
literate
notebook
or
document
integrat-
ing code,
visualiza-
tions, and
explana-
tory text

Workshop
Partici-
pants

Link

23



ID Description Disciplines Prerequisites Evidence Author Source
rse_tooling_2Use Python

for
visualization,
scripting,
templating,
and
integration
tasks

Research
Software
Engineering

Submit a
Python
project
demon-
strating
use of
libraries
for visuali-
sation,
web tasks,
and
templating

Workshop
Partici-
pants

Link

rse_tooling_3Write and use
Bash scripts
for
automation

Research
Software
Engineering

Submit
shell
scripts au-
tomating
file manip-
ulation or
computa-
tional
workflows

Workshop
Partici-
pants

Link

rse_tooling_4Apply testing,
debugging,
and logging
techniques to
ensure
software
reliability

Research
Software
Engineering

rse_tooling_2 Submit
logs, test
cases, and
debugging
documen-
tation for
a
non-trivial
Python or
Bash
project

Workshop
Partici-
pants

Link

rse_tooling_5Use workflow
management
tools (e.g.,
CWL,
Nextflow) to
design
scalable,
reproducible
pipelines

Research
Software
Engineering

rse_tooling_3,
rse_tooling_11

Submit a
repro-
ducible
workflow
including
metadata
and in-
put/output
definitions

Workshop
Partici-
pants

Link

24



ID Description Disciplines Prerequisites Evidence Author Source
rse_tooling_6Estimate

resource
requirements
for computa-
tional tasks
using
profiling and
benchmarking

Research
Software
Engineering

rse_tooling_2,
rse_tooling_5

Provide
resource
usage
profiles
and
discuss op-
timization
implica-
tions

Workshop
Partici-
pants

Link

rse_tooling_7Use package
managers and
virtual
environments
(e.g., conda,
nix) to
manage
software
dependencies

Research
Software
Engineering

Submit en-
vironment
definitions
and repro-
ducible
setup in-
structions
for a
project

Workshop
Partici-
pants

Link

rse_tooling_8Document
and package
software for
usability and
reusability,
using
generators
and modular
design

Research
Software
Engineering

rse_tooling_2 Submit
user and
developer
documen-
tation
generated
with
Sphinx or
similar,
plus a
reusable
code
module

Workshop
Partici-
pants

Link

25



ID Description Disciplines Prerequisites Evidence Author Source
rse_tooling_9Communicate

technical RSE
topics
effectively
with
non-technical
audiences

Research
Software
Engineering

Prepare
and
deliver a
presenta-
tion or
write an
article
explaining
RSE
concepts
to a
general
audience

Workshop
Partici-
pants

Link

rse_tooling_10Apply authen-
tication and
authorization
mechanisms
(e.g., LDAP,
ACLs, Active
Directory)

Research
Software
Engineering

Configure
and
demon-
strate
access
control for
a
multi-user
service or
applica-
tion

Workshop
Partici-
pants

Link

rse_tooling_11Make
informed
decisions
about tooling
and
infrastructure
(e.g., Jupyter
vs scripts,
local vs
HPC/cloud)

Research
Software
Engineering

rse_tooling_1,
rse_tooling_2,
rse_tooling_3

Submit a
compara-
tive
analysis
justifying
tooling
and infras-
tructure
choices for
a research
project

Workshop
Partici-
pants

Link

26



ID Description Disciplines Prerequisites Evidence Author Source
rse_tooling_12Teach and

practice
collaborative
development,
including
version
control and
code review

Research
Software
Engineering

rse_tooling_2 Submit a
project
with
version
history
and docu-
mented
code
reviews

Workshop
Partici-
pants

Link

rse_tooling_13Mentor others
in research
software
engineering
practices

Research
Software
Engineering

rse_tooling_12 Document
a
mentoring
session,
workshop,
or support
activity

Workshop
Partici-
pants

Link

rse_tooling_14Deploy and
maintain web
servers for
research
applications

Research
Software
Engineering

rse_tooling_2 Deploy a
working
web appli-
cation
with setup
and main-
tenance
documen-
tation

Workshop
Partici-
pants

Link

rse_tooling_15Understand
and manage
file systems,
including
local and
network-
attached
storage

Research
Software
Engineering

Document
storage
strategies
and access
mecha-
nisms in a
real-world
setup

Workshop
Partici-
pants

Link

8.6 Sources & Implementations:

8.6.1 Courses

• MIT Missing Semester

27

https://missing.csail.mit.edu


• CodeRefinery

• INTERSECT Training Materials

• Digital Research Academy Materials (Git, HPC, Reproducibility, Research Software)

• Building Better Research Software (SSI)

• Docker for neuroscience (jupyter book)

8.7 Classical Software Engineering

To summarise the vast range of the skills a software engineer is typically equipped with, we
refer to the Guide to the Software Engineering Body of Knowledge (Bourque, Fairley, and
IEEE Computer Society 2014). Because research software engineering is an interface dis-
cipline, RSEs are often stronger in topics more commonly encountered in research software
contexts (e.g., mathematical and engineering foundations) than in other areas (e.g., software
engineering economics). However, they bring a solid level of competence in all software engi-
neering topics. Therefore, RSEs can set and analyse software requirements in the context of
open-ended, question-driven research. They can design software so that it can sustainably grow,
often in an environment of rapid turnover of contributors. They are competent in implement-
ing solutions themselves in a wide range of technologies fit for different scientific applications.
They can formulate and implement various types of tests, they can independently maintain
software and automate operations of the integration and release process. They can provide
working, scalable, and future-proof solutions in a professional context and with common project
and software management techniques, adapted to the needs of the research environment. Fi-
nally, as people who have often gained significant research experience in a particular discipline,
they combine the necessary foundations from their domain with software engineering skills to
develop complex software.(Goth et al. 2024)

This module tries to lay the foundations for the advanced RSE software engineering training.

Bourque, Pierre, Richard E. Fairley, and IEEE Computer Society. 2014. Guide to the Software
Engineering Body of Knowledge (SWEBOK(R)): Version 3.0. 3rd ed. Washington, DC,
USA: IEEE Computer Society Press.

Goth, F, R Alves, M Braun, LJ Castro, G Chourdakis, S Christ, J Cohen, et al. 2024.
“Foundational Competencies and Responsibilities of a Research Software Engineer [Version
1; Peer Review: Awaiting Peer Review].” F1000Research 13 (1429). https://doi.org/10.
12688/f1000research.157778.1.

Segal, Judith. 2009. “Some Challenges Facing Software Engineers Developing Software for
Scientists.” In Proceedings of the 2009 ICSE Workshop on Software Engineering for Com-
putational Science and Engineering. IEEE. https://doi.org/10.1109/secse.2009.5069156.

28

https://coderefinery.org/lessons/
https://intersect-training.org/training-material/
https://zenodo.org/communities/digiresacademy/records?q=&f=subject%3AResearch%20Software&f=subject%3AGit&f=subject%3AHPC&f=subject%3AReproducibility&l=list&p=1&s=10&sort=newest
https://carpentries-incubator.github.io/fair-research-software/
https://m-earnest.github.io/docker_workshop/index.html
https://doi.org/10.12688/f1000research.157778.1
https://doi.org/10.12688/f1000research.157778.1
https://doi.org/10.1109/secse.2009.5069156


8.8 Software Engineering I

Basic concepts of software engineering, software and product life cycle, process models for
the design of large software systems, semantic aspects of domain description, hierarchy, paral-
lelism, real-time and embedded systems as fundamental paradigms, organizational principles
of complex software systems, design by contract, patterns in modeling and design methods
of quality assurance, evolution and re-engineering, selected languages and tools for process-
and object-oriented modeling, methods and languages for object-oriented design, architectures
and architectural patterns of software systems, architecture of enterprise applications, design
and implementation models in the object-oriented paradigm, e.g., Java 2 SE, design patterns,
software testing methods.

Lecture: Software Engineering I

SWS: 2 ECTS: 4

Exercise: Software Engineering I Exercise

SWS: 2 ECTS: 2

8.9 Software Engineering 2

The module covers a selection of advanced topics in the field of software engineering, such
as software quality assurance, service engineering, virtualization, programming languages and
design, and formal methods in system design.

Lecture: Software Engineering II

SWS: 2 ECTS: 4

Exercise: Software Engineering II Exercise

SWS: 2 ECTS: 2

8.10 Module Competences

29



ID Description Disciplines Prerequisites Evidence Author Source
gen_programming_1Understand

the
fundamental
concepts of
software
engineering

Computer
Science

Demonstrate
under-
standing
through
theoretical
assess-
ments and
practical
examples

University
of Pots-
dam

Link

gen_programming_2Apply various
approaches of
software
engineering

Computer
Science

gen_programming_1Complete
assign-
ments or
projects
using
different
software
engineer-
ing
methods

University
of Pots-
dam

Link

gen_programming_3Identify and
utilize
essential
technologies
and tools for
specification,
component-
based
development,
and quality
assurance of
modern
software
systems

Computer
Science

gen_programming_1Work with
selected
tools and
technolo-
gies in
practical
exercises
and case
studies

University
of Pots-
dam

Link

30

https://puls.uni-potsdam.de/qisserver/pages/cs/sys/portal/hisinoneIframePage.faces?id=qis_MKSuchen_0&navigationPosition=up_modulbeschreibung%2Cqis_MKSuchen&recordRequest=true
https://puls.uni-potsdam.de/qisserver/pages/cs/sys/portal/hisinoneIframePage.faces?id=qis_MKSuchen_0&navigationPosition=up_modulbeschreibung%2Cqis_MKSuchen&recordRequest=true
https://puls.uni-potsdam.de/qisserver/pages/cs/sys/portal/hisinoneIframePage.faces?id=qis_MKSuchen_0&navigationPosition=up_modulbeschreibung%2Cqis_MKSuchen&recordRequest=true


ID Description Disciplines Prerequisites Evidence Author Source
gen_programming_4Demonstrate

an in-depth
understand-
ing and
ability to
apply various
approaches of
software
engineering

Computer
Science

gen_programming_1,
gen_programming_2

Successfully
complete
advanced
projects
employing
different
software
engineer-
ing
methods

University
of Pots-
dam

Link

gen_programming_5Understand
the character-
istics of a
wide range of
technologies
and tools for
specification,
component-
based
development,
and quality
assurance of
modern
software
systems, and
apply them in
various
contexts

Computer
Science

gen_programming_3Apply ap-
propriate
technolo-
gies and
tools in
complex
case
studies
and
demon-
strate
their use
in different
applica-
tion
scenarios

University
of Pots-
dam

Link

8.11 Sources & Implementations:

8.11.1 Curricula

• Computing Curricula 2020

8.11.2 Courses

• Software Engineering I

31

https://puls.uni-potsdam.de/qisserver/pages/cs/sys/portal/hisinoneIframePage.faces?id=qis_MKSuchen_0&navigationPosition=up_modulbeschreibung%2Cqis_MKSuchen&recordRequest=true
https://puls.uni-potsdam.de/qisserver/pages/cs/sys/portal/hisinoneIframePage.faces?id=qis_MKSuchen_0&navigationPosition=up_modulbeschreibung%2Cqis_MKSuchen&recordRequest=true
https://dl.acm.org/doi/book/10.1145/3467967
https://puls.uni-potsdam.de/qisserver/pages/cs/sys/portal/hisinoneIframePage.faces?id=qis_MKSuchen_0&navigationPosition=up_modulbeschreibung%2Cqis_MKSuchen&recordRequest=true


8.11.3 Programs

• UP Computational Science Master

Lecture: Mathematical Foundations of Data Science The module provides mathematical
foundations in the field of Data Science. Topics include a selection from the areas of graph
analysis, stochastic models, and signal analysis using wavelets. SWS: 4 ECTS: 6

8.12 Statistical Data Analysis

This module focuses on the statistical study and quantitative analysis of the dependence
between observed random variables (e.g., yield/production settings; lifespan/treatment type
and injury type). Essential foundations for the statistical treatment of such relationships are
provided by the linear regression model, which is studied in detail in the first part of the lec-
ture. Within this framework, topics such as estimation, testing, and uncertainty quantification
(analysis of variance) are addressed. In the second part, an introduction to advanced methods
and approaches for examining relationships is offered, including nonlinear and nonparametric
regression models. Additionally, questions of classification and dimensionality reduction are
covered.

Lecture: Statistical Data Analysis

SWS: 4 ECTS: 4

Exercise: Data-oriented Programming

SWS: 4 ECTS: 6

Exercise: Text2Data

SWS: 4 ECTS: 4

8.13 Module Competences

32

https://www.uni-potsdam.de/de/studium/konkret/rechtsgrundlagen/studienordnungen/informatik


ID Description Disciplines Prerequisites Evidence Author Source
gen_datascience_1Possess com-

prehensive,
detailed, and
specialized
knowledge of
selected
fundamentals
in the field of
Data Science

Data Science Demonstrate
knowledge
through
theoretical
exams and
practical
assign-
ments

University
of Pots-
dam

Link

gen_datascience_2Demonstrate
an in-depth
understand-
ing of selected
Data Science
methods

Data Science gen_datascience_1Apply
Data
Science
methods
in
practical
projects
and case
studies

University
of Pots-
dam

Link

gen_datascience_3Analyze novel
data
assimilation
and inference
problems,
develop and
implement
solutions, and
assess
solution
quality

Data Science gen_datascience_2Solve
complex
inference
problems
and
present im-
plemented
solutions
with
evaluation

University
of Pots-
dam

Link

33

https://puls.uni-potsdam.de/qisserver/pages/cs/sys/portal/hisinoneIframePage.faces?id=qis_MKSuchen_0&navigationPosition=up_modulbeschreibung%2Cqis_MKSuchen&recordRequest=true
https://puls.uni-potsdam.de/qisserver/pages/cs/sys/portal/hisinoneIframePage.faces?id=qis_MKSuchen_0&navigationPosition=up_modulbeschreibung%2Cqis_MKSuchen&recordRequest=true
https://puls.uni-potsdam.de/qisserver/pages/cs/sys/portal/hisinoneIframePage.faces?id=qis_MKSuchen_0&navigationPosition=up_modulbeschreibung%2Cqis_MKSuchen&recordRequest=true


ID Description Disciplines Prerequisites Evidence Author Source
gen_datascience_4Develop new

ideas and
methods,
weigh
alternatives
under
incomplete
information,
and evaluate
them
considering
different
evaluation
criteria

Data Science gen_datascience_2Present
projects
showcas-
ing
creative
problem-
solving
and
alternative
evalua-
tions
under un-
certainty

University
of Pots-
dam

Link

gen_statistics_1Possess com-
prehensive,
detailed, and
specialized
understand-
ing of the
linear
regression
model based
on the latest
research

Data Science,
Statistics

Apply
linear
regression
models to
practical
problems
and
interpret
results

University
of Pots-
dam

Link

gen_statistics_2Understand
fundamental
concepts and
methods of
nonparamet-
ric statistics

Data Science,
Statistics

gen_statistics_1 Solve
problems
involving
nonpara-
metric
methods
and
explain
applied
techniques

University
of Pots-
dam

Link

34

https://puls.uni-potsdam.de/qisserver/pages/cs/sys/portal/hisinoneIframePage.faces?id=qis_MKSuchen_0&navigationPosition=up_modulbeschreibung%2Cqis_MKSuchen&recordRequest=true
https://puls.uni-potsdam.de/qisserver/pages/cs/sys/portal/hisinoneIframePage.faces?id=qis_MKSuchen_0&navigationPosition=up_modulbeschreibung%2Cqis_MKSuchen&recordRequest=true
https://puls.uni-potsdam.de/qisserver/pages/cs/sys/portal/hisinoneIframePage.faces?id=qis_MKSuchen_0&navigationPosition=up_modulbeschreibung%2Cqis_MKSuchen&recordRequest=true


ID Description Disciplines Prerequisites Evidence Author Source
gen_statistics_3Solve complex

statistical
data analysis
problems,
evaluate
alternative
modeling
approaches
according to
various
criteria, and
use statistical
software
packages for
analysis

Data Science,
Statistics

gen_statistics_2 Develop
solutions
for
complex
data
problems
using ap-
propriate
statistical
methods
and
software

University
of Pots-
dam

Link

35

https://puls.uni-potsdam.de/qisserver/pages/cs/sys/portal/hisinoneIframePage.faces?id=qis_MKSuchen_0&navigationPosition=up_modulbeschreibung%2Cqis_MKSuchen&recordRequest=true


ID Description Disciplines Prerequisites Evidence Author Source
gen_statistics_4Demonstrate

academic
competences
including self-
organization,
planning
skills
(identifying
work steps),
scientific
thinking and
working
techniques
(developing
solutions for
complex
questions),
discussion of
methods,
verification of
hypotheses,
application of
mathematical
and statistical
methods, and
use of
software
packages

Data Science,
Statistics

gen_statistics_2 Document
project
workflows
demon-
strating
planning,
analysis,
evaluation,
and use of
statistical
software
tools

University
of Pots-
dam

Link

8.14 Sources & Implementations:

8.14.1 Curricula

• Emppfehlungen Masterstudiengänge Data Science

8.14.2 Courses

• Statistical Data Analysis

36

https://puls.uni-potsdam.de/qisserver/pages/cs/sys/portal/hisinoneIframePage.faces?id=qis_MKSuchen_0&navigationPosition=up_modulbeschreibung%2Cqis_MKSuchen&recordRequest=true
https://gi.de/fileadmin/GI/Hauptseite/Service/Publikationen/Empfehlungen/Empfehlungen_Masterstdiengaenge_DataScience_2021.pdf
https://puls.uni-potsdam.de/qisserver/pages/cs/sys/portal/hisinoneIframePage.faces?id=qis_MKSuchen_0&navigationPosition=up_modulbeschreibung%2Cqis_MKSuchen&recordRequest=true


• Mathematical Foundations of Data Science

• Programmieren für Data Scientists Python

8.14.3 Programs

• UP Data Science

8.15 RSE Computing

RSEs with expertise in HPC and other performance-critical computing domains specialize in
optimizing code for efficient execution across various platforms, including clusters, cloud, edge,
and embedded systems. They understand parallel programming models, hardware-specific op-
timizations, profiling tools, and platform constraints such as memory, energy, and latency.
Their skills enable them to adapt software to diverse infrastructures, manage complex de-
pendencies, and support researchers in accessing and using advanced computing resources
effectively and sustainably.

8.15.1 Basic Scientific Computing

8.15.1.1 Module Overview

This module provides an entry‑level yet rigorous foundation in scientific computing for grad-
uate students and researchers who need to design, implement, and evaluate computa-
tional experiments. Learners gain an awareness of the numerical underpinnings of modern
simulation and data‑driven research, with an emphasis on writing reproducible, efficient, and
trustworthy code.

8.15.1.2 Intended Learning Outcomes

By the end of the module participants will be able to

1. Benchmark small programs and interpret performance metrics in a research context.
2. Explain how approximation theory and floating‑point arithmetic affect numerical accu-

racy and stability.
3. Identify when to use established simulation libraries (e.g. BLAS/LAPACK, PETSc, Trili-

nos) instead of custom code.
4. Write simple GPU kernels and describe the core principles of accelerator programming.
5. Submit and monitor batch & array jobs on a mid‑size compute cluster.

37

https://puls.uni-potsdam.de/qisserver/pages/cs/sys/portal/hisinoneIframePage.faces?id=qis_MKSuchen_0&navigationPosition=up_modulbeschreibung%2Cqis_MKSuchen&recordRequest=true
https://studip.uni-goettingen.de/dispatch.php/course/details/index/d5e09a9298492991a57d59c7b2f09f98
https://www.uni-potsdam.de/de/studium/studienangebot/master/data-science


6. Describe common HPC challenges—such as I/O bottlenecks, threading, and NUMA—
and propose mitigation strategies.

7. Maintain research software through continuous benchmarking.

8.15.1.3 Syllabus (Indicative Content)

Week Theme Topics
1 Benchmarking &

Profiling
Timing strategies · micro vs. macro benchmarks · tooling
overview

2 Precision &
Approximation

IEEE‑754 recap · conditioning & stability · error
propagation

3 Scientific Libraries BLAS/LAPACK anatomy · hierarchical I/O libraries ·
overview of PETSc/Trilinos/Hypre

4 GPU Primer Kernel model · memory hierarchy ·
CUDA/OpenCL/PyTorch lightning intro

5 Working on a
Cluster

Slurm basics · job arrays · job dependencies · simple Bash
launchers

6 HPC Pitfalls I/O throughput · thread oversubscription · NUMA
awareness

7 Software
Maintenance

Regression + performance tests · continuous benchmarking
pipelines

8.15.1.4 Teaching & Learning Methods

Short lectures (30%) are coupled with hands‑on labs (70%). Students complete weekly note-
books and a mini‑project that reproduces and optimises a published computational result.

8.15.1.5 Assessment

Component Weight Details
Continuous labs 40% Weekly graded notebooks
Final mini‑project 60% Report, code, and benchmark suite

8.15.1.6 Prerequisites

• Basic programming in Python, C/C++, or Julia
• Undergraduate calculus & linear algebra

38



8.15.1.7 Key Resources

ChatGPT fantasy

Lecture: Scientific Computing Basics

SWS: 2 ECTS: 3

Exercise: Scientific Computing Basics Exercise

SWS: 2 ECTS: 3

Lecture: High Performance Computing

SWS: 2 ECTS: 3

Exercise: High Performance Computing Exercise

SWS: 2 ECTS: 3

8.16 Module Competences

ID Description Disciplines Prerequisites Evidence Author Source
comp_module_1Benchmark

and profile
computa-
tional code to
evaluate
performance
and
bottlenecks

Scientific
Computing

rse_tooling_2 Submit
bench-
mark
reports
comparing
implemen-
tations
and
justifying
trade-offs

RSE
Curricu-
lum
Draft

Link

comp_module_2Explain and
apply
principles of
approxima-
tion theory
and numerical
precision in
scientific
computing

Scientific
Computing

Answer
conceptual
questions
and
implement
small
examples
highlight-
ing
precision
trade-offs

RSE
Curricu-
lum
Draft

Link

39



ID Description Disciplines Prerequisites Evidence Author Source
comp_module_3Explain

floating-point
arithmetic
and its
implications
for scientific
accuracy and
performance

Scientific
Computing

comp_module_2 Provide
examples
showing
effects of
precision
loss and
propose
mitiga-
tions

RSE
Curricu-
lum
Draft

Link

comp_module_4Describe
common
simulation
libraries and
numerical
frameworks
(e.g., BLAS,
LAPACK,
PETSc,
Trilinos)

Scientific
Computing

List
relevant
libraries
for a task
and justify
choice or
avoidance
of custom
implemen-
tations

RSE
Curricu-
lum
Draft

Link

comp_module_5Compare
interpreted
and compiled
languages in
terms of
performance
and
suitability for
computing
tasks

Scientific
Computing

Write code
samples in
both types
of
language
and
explain
their per-
formance
character-
istics

RSE
Curricu-
lum
Draft

Link

40



ID Description Disciplines Prerequisites Evidence Author Source
hpc_module_1Run batch

and array
jobs on a
cluster,
including job
dependencies

High-
Performance
Computing

rse_tooling_3 Submit
job scripts
using
SLURM
or similar
systems
demon-
strating
correct use
of job
arrays and
dependen-
cies

RSE
Curricu-
lum
Draft

Link

hpc_module_2Identify and
manage
common
challenges in
HPC systems
(e.g., I/O
bottlenecks,
threading,
NUMA
memory)

High-
Performance
Computing

hpc_module_1 Provide
perfor-
mance
logs and
interpret
bottle-
necks in a
real or
simulated
HPC task

RSE
Curricu-
lum
Draft

Link

hpc_module_3Use shell
scripting (e.g.,
Bash) to
automate
HPC job
submission

High-
Performance
Computing

rse_tooling_3 Submit
scripts
that
automate
the
execution
of HPC
jobs and
handle job
logic

RSE
Curricu-
lum
Draft

Link

41



ID Description Disciplines Prerequisites Evidence Author Source
hpc_module_4Understand

and use the
principles of
accelerator
programming
(e.g., GPU
kernels and
frameworks)

High-
Performance
Computing

Submit a
small
CUDA or
OpenCL
program
with docu-
mentation
of the
principles
used

RSE
Curricu-
lum
Draft

Link

hpc_module_5Maintain
scientific
computing
software
including use
of continuous
benchmarking

High-
Performance
Computing

comp_module_1 Provide
bench-
mark and
perfor-
mance
history for
evolving
versions of
software

RSE
Curricu-
lum
Draft

Link

8.17 Sources & Implementations:

8.17.1 Curricula

• EUMaster4HPC

8.17.2 Courses

• Viral Instructions Hardware

• HPC Computing

8.17.3 Programs

• HPC-carpentry

42

https://eumaster4hpc.eu/studies/curriculum/
https://viralinstruction.com/posts/hardware/
https://en.cs.uni-paderborn.de/hpc/teaching/courses/ss-2024/introduction-to-high-performance-computing
https://www.hpc-carpentry.org/index.html


8.18 Master’s Thesis Module: Research Software Engineering
Thesis

The master’s thesis is the culminating component of the RSE programme. In this module,
students apply the full spectrum of Research Software Engineering skills in a real-world re-
search setting, demonstrating their ability to independently design, implement, and document
a computational research contribution.

The thesis must address a research question in collaboration with a scientific or applied do-
main, but its core should include a substantial computational component. This may involve
software development, data-intensive research, reproducibility infrastructure, or performance
engineering — depending on the chosen topic and specialization.

Each thesis must be supervised jointly by:

• A domain expert (e.g., in physics, life sciences, or humanities)
• An RSE mentor (who ensures the quality and relevance of the computational contribu-

tion)

Students are expected to follow best practices in software engineering, version control, testing,
and documentation. The final submission must include:

• A written thesis describing both the scientific and software contributions
• A structured, reproducible code repository
• A presentation and defense in a thesis colloquium

The colloquium serves as both a public communication exercise and a final evaluation, where
students present their project and reflect on challenges and insights gained during the thesis.

Thesis: RSE Master Thesis

SWS: 10 ECTS: 30

43



9 Glossary

C A general-purpose programming language often used for system-level development.

Cpp C++ — an extension of C that supports object-oriented programming.

DIST Software distribution — the practice of packaging and delivering software and its de-
pendencies.

DOCBB Documentation and best practices — ensuring code is understandable and main-
tainable.

DOMREP Domain repositories — platforms that store and share domain-specific research
data.

HPC High-Performance Computing — using supercomputers and parallel processing for com-
plex tasks.

MOD Modularity — the design principle of separating software into interchangeable, func-
tional components.

NEW Novel research — work that contributes original insights to a scientific domain.

PM Project Management — planning, executing, and overseeing projects effectively.

Python A high-level programming language widely used in data science and scripting.

R A programming language and environment for statistical computing and graphics.

RSE Research Software Engineer — someone who applies software engineering skills to scien-
tific research.

SP Software publication — the process of preparing and disseminating software artifacts.

SRU Software reuse — the practice of using existing software components in new projects.

STEM Science, Technology, Engineering, and Mathematics.

SWREPOS Software repositories — systems for storing and managing software code and
versions.

TEAM Teamwork — the ability to collaborate effectively in a group setting.

TEACH Teaching — the skill of communicating knowledge and helping others learn.

USERS End users — the scientists or researchers who rely on software tools.

44


	WORK IN PROGRESS THIS IS NOT THE OFFICIAL STATEMENT OF THE COMMUNTIY BUT THE CURRENT VERSION
	Why a RSE Curriculum?
	Research skills

	Ideas
	Original Motivation
	Software / Technical Skills
	Research Skills
	Communication Skills

	Hands-On Practice
	Optional Modules and Specialisations
	Master's Thesis

	Possible Job Roles for an RSE
	Open Science RSE
	Project/Community Manager RSEs
	Teaching RSEs
	User Interface/User Experience Designers for Research Software

	General Study Process
	Semester 1
	Semester 2
	Semester 3
	Semester 4

	Complete Competences Table
	Module Descriptions (Inline)
	Wildcard Science Module
	Science Lab Module
	Example Module: Fundamentals of Computer Science
	Basics of Computer Science
	Applied Programming

	Module Competences
	Sources & Implementations:
	Curricula
	Courses
	Programs


	Wildcard Computational Science
	Introduction
	General Competencies
	RSE-Specific Topics
	Beyond the Basics
	Module Competences
	Sources & Implementations:
	Courses

	Classical Software Engineering
	Software Engineering I
	Software Engineering 2
	Module Competences
	Sources & Implementations:
	Curricula
	Courses
	Programs

	Statistical Data Analysis
	Module Competences
	Sources & Implementations:
	Curricula
	Courses
	Programs

	RSE Computing
	Basic Scientific Computing

	Module Competences
	Sources & Implementations:
	Curricula
	Courses
	Programs

	Master's Thesis Module: Research Software Engineering Thesis

	Glossary

